CONSTRUCTION COST COMPARISON REPORT - AFFORDABLE HOUSING

TIMBER & MASONRY
Timber frame & masonry.
An independent study to compare the cost of the two build methods in order to determine which is more economical for affordable housing.

The purpose of this report is to gain an appreciation of the comparative costs and establish the basis for a more detailed study. The report’s conclusion of this preliminary investigation is that timber is marginally more cost effective than masonry. However, to unequivocally prove the case a more extensive investigation and detailed analysis will be undertaken.
ABOUT THE AUTHOR

Ian Dacre BSc (Hons) MRICS, RLB Partner

Ian has been active in the residential sector for over 20 years and has delivered 1,169 homes of varying forms. Ian’s current live residential projects total just over 650 homes. Within Ian’s affordable and private market portfolio are apartment blocks, houses, bungalows, terrace houses, Grade I and II listed conversions and the infrastructure associated with each.

He is partner at Rider Levett Bucknall in Bristol, a Chartered Quantity Surveyor with 25 years’ experience and an assessor for the RICS. He has been involved with Constructing Excellence for a number of years and has undertaken research in Defining Value, Supply Chain Integration, Knowledge Management, Performance Management and Desired Outcomes resulting in published papers.

Ian is the author of the STA Estimating Guide 2016 and is currently writing the updated version due for launch later in 2018. He has also been involved in partnering research through Homes England. Ian has lectured in cost management and other related topics throughout his career.

Ian’s most notable projects (non-residential) are Securing the Heritage Core and Recreating Brunel’s Great Engine for the SS Great Britain Trust and for Prestige Ticketing (G4Dex) the three storey 5* hospitality pavilion and other concession stands for the London 2012 Olympics.

RIDER LEVETT BUCKNALL

Rider Levett Bucknall (RLB) has been operating in the residential sector for over 20 years. Our clients include national house-builders, residential developers and investors, registered affordable housing providers, Borough Councils, the Greater London Authority and Homes England.

Our capability is wide-ranging and our residential portfolio includes:

- £300m+ private led mixed use
- Master planning
- Build to rent developments
- Affordable housing
- Estate regeneration
- Residential towers up to 65 storeys
- Prime apartments and houses
- Specialist housing and care
- Office to residential conversions
- Historic structures
- Student residences

Our residential team are experts in their field and able to add insight and create real value through the design and development process. Over the last 5 years, we have been actively involved in schemes providing over 20,000 homes, with a value in excess of £5bn and currently have over 8,000 homes under construction.

With 500 UK staff and 3,600 worldwide Rider Levett Bucknall has a truly global reach, and with such scope can offer a local presence to its clients almost without exception. We are committed to our core services and pride ourselves on our dedication to customer care and leading edge service provision. We are an award winning leading independent firm providing our clients with some of the most comprehensive and forward-thinking advice available.

AT A GLANCE

- Independent: privately owned and managed
- £48 million UK turnover
- £235 million global turnover
- 500 people throughout the UK
- 10 UK offices
- Over 120 offices worldwide
- Delivering quality services with business growth through customer satisfaction

CORE SERVICES

- Cost management and quantity surveying
- Project and programme management
- Building surveying and Health & Safety
- Design management
- Specification consultancy
- Advisory

TIMBER

Currently accounting for about 28% of UK housing, structural timber is a well-proven, versatile construction method. It benefits from the many cost efficiencies of off-site manufacture, including reduced build programmes.

MASONRY

The majority of UK housing is currently delivered using traditional masonry methods. On site construction using masonry has benefited from recent innovation and remains an efficient and cost effective approach.
PREFACE

Rider Levett Bucknall (RLB) has delivered many residential projects over the years. The selection process over the form of construction considers a number of factors including availability, practicality and technical performance. Importantly this process also involves commercial considerations and sometimes the debate over whether masonry or timber is the most economical solution.

This deliberation is continuing throughout the industry and will be intensified by structural offsite timber solutions becoming increasingly used to fulfil the growing demand for new homes across the UK. Equally there is increasing demand for cross laminated timber (CLT) which is now competing economically with steel and concrete frames.

We are pleased to have been able to complete this independent study comparing timber frame to masonry for a conventional housing project and we gratefully appreciate the time taken by the four contractors who priced the model project, the consultant architects and engineers who provided their expertise, as well as all the other parties involved.

We hope the research will be of interest to many members of the construction industry and has provided an answer to a question that has been debated for many years, and probably will continue to be in the future.

Andrew Reynolds
UK and Global Board Director
Rider Levett Bucknall UK Ltd

EXECUTIVE SUMMARY

The research study has been managed independently by Rider Levett Bucknall (RLB) with the support of the parties named.

The affordable house type designs were provided by independent architect and engineering companies.

From the fully designed project RLB prepared Bills of Quantities for the contractors to price.

Four contractors were approached to submit their pricing and all four responded.

Contractor information was received regarding the anticipated construction programmes.

RLB has used the pricing to formulate this independent report and the costs summaries therein.

COST SUMMARY

<table>
<thead>
<tr>
<th></th>
<th>TIMBER</th>
<th>MASONRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction cost per m²</td>
<td>£1,065.90</td>
<td>£1,067.24</td>
</tr>
<tr>
<td>Overall cost per m²</td>
<td>£1,148.38</td>
<td>£1,180.34</td>
</tr>
<tr>
<td>Programme (weeks)</td>
<td>41</td>
<td>49</td>
</tr>
<tr>
<td>Construction cost saving</td>
<td>1.1%</td>
<td></td>
</tr>
<tr>
<td>Overall cost saving</td>
<td>2.8%</td>
<td></td>
</tr>
<tr>
<td>Programme saving</td>
<td>19.5%</td>
<td></td>
</tr>
</tbody>
</table>

The independent result of this study has demonstrated that timber frame is the most economic structural solution.

This report is based on prices received during 1Q 2018. Markets and economies within the construction industry will change in the future and may influence the conclusions with in this study.

A future study focusing on private house building and possibly performance standards across a range of dwelling types will broaden the analysis and conclusions reached.

As with many structural solutions throughout the construction industry this debate will continue.
Which is the more economical way to build housing: timber frame or masonry?

This question has been posed by many people and organisations within the construction industry for years. As both construction techniques are widely used throughout the UK industry, albeit masonry is more prevalent in England and Wales, it can be assumed that there is not much between the two. If one was more expensive than the other, its use would not be so prevalent.

We would assume it is a simple question to answer, but the more in depth you look the more multifaceted the answer becomes. RLB has discussed with contractors in the past about their build preferences, some preferring timber, some preferring masonry. Indeed tenders returned over the years have had similar differences, some offering a timber structural solution, some masonry, for the same project but with the overall tender price being very comparable.

Comparing the two build methods is complex as the structures, procurement models and site operations are different. Masonry construction, in general terms, creates the same layouts, sizes and arrangements and are designed to the current edition of the Building Regulations in England.

The structural designs, whether timber or masonry, create the same layouts, sizes and arrangements and are designed to the current edition of the Building Regulations in England.

The design, manufacture and delivery of the timber frame, including plant and site labour to off-load and erect, with internal safety decking / working platforms was included within the timber frame, including plant and site labour to off-load and erect, with internal safety decking / working platforms.

The study compared the buildings only, with the external works and utility services excluded at this stage as these would be very much site specific in their content, works and any abnormal or risk areas. Also, they are common to both structural solutions and therefore have no bearing on the analysis. It also assumes a continuous build on site from commencement to completion.

The location of the theoretical project for the study was Birmingham with good access to main trunk roads.

The detailed specification was included on the drawings issued to each contractor. In regard to the masonry and timber frame aspects, relating to the structural elements, the summary table on Page 14 lists the key specification items that are included.

The model is an affordable two storey housing design using two bed four person dwellings complying with Homes England (formerly the Homes and Communities Agency) design standards. The model was then replicated to create a single terrace block of four houses. Each block is assumed to have the following mix:

- 2nr mid terrace
- 2nr end terrace

To give a degree of scale for the project we have taken eight terrace blocks resulting in a total scheme delivery of 32 new dwellings.

The house type designs were prepared by HTA Design LLP with structural engineering input by Milner Associates. It is assumed that the foundation design is similar for both build methods and any cost benefit possible from a lighter timber structure has not been incorporated.

The structural designs, whether timber or masonry, create the same layouts, sizes and arrangements and are designed to the current edition of the Building Regulations in England.

RLB prepared a New Rules of Measurement (NRM) Bills of Quantities (BQ) with an overall pricing summary for issue to the contractors as follows:

- Timber frame - mid terrace
- Timber frame - end terrace
- Masonry - mid terrace
- Masonry - end terrace

Each contractor received the following drawing information with the specification included:

- Mid terrace floor plan
- End terrace floor plan
- General arrangement plans (dimensions)
- Sections
- Elevations
- Wall types
- Floor and roof types
- Substructure details 1 - threshold and ventilation details
- Substructure details 2 - foundation sections
- Substructure details 3 - threshold and internal wall foundation details
- Ground floor penetrations
- Superstructure details 1 - floor / wall edge and external wall opening details
- Superstructure details 2 - eaves, gable wall and verge details
- Superstructure details 3 - parapet roof and ridge details
- Superstructure details 4 - external canopy and floor/wall junction details
- Internal stair details

The design, manufacture and delivery of the timber frame, including plant and site labour to off-load and erect, with internal safety decking / working platforms / fall arrest systems was included within the timber frame price issued to all contractors.

RLB also advised the contractors regarding the specific durations per block for delivery and erection of the timber frame as follows:

- Three crane days per terrace for the erection of the timber frame
- Three deliveries per terrace for the timber frame (excluding trusses direct to site).
MASONRY ELEVATIONS AND PLANS

END TERRACE

2B4P House Ground floor plan

2B4P House First floor plan

2B4P House Second floor plan

MID TERRACE

2B4P House Ground floor plan

2B4P House First floor plan

2B4P House Second floor plan
TIMBER FRAME

EXTERNAL WALLS TO HOUSES
- 102.5mm facing brickwork
- Timber frame wall-ties to suit 50mm cavity
- Cavity barriers to suit 50mm cavity
- 140mm wide timber stud panels with 9mm OSB and low emissivity reflective breather paper
- 140mm wide timber sofit panels, head-binders and rails
- 90mm board insulation factory-fitted to external wall panels
- Internally lined with low emissivity vapour control layer, 25mm service zone battens and 1 layer of 15mm plasterboard with taped & filled joints
- Overall thickness of external wall = 340mm
- To achieve 0.19 W/m²K U-value

MASONRY
- Overall thickness of external wall = 340mm

EXTERNAL WALLS TO ROOF PARAPET
- 102.5mm facing brickwork
- Timber frame wall-ties to suit 50mm cavity
- Cavity barriers to suit 50mm cavity
- 90mm board insulation factory-fitted to external wall panels, filled with 50mm wool insulation slabs to internal side
- 18mm plywood to internal face of parapet fitted on site
- 89mm wide timber stud panels with one row staggered vertically and horizontally

INTERNAL WALLS: LOADBEARING
- 15mm wall board with taped & jointed finish
- 9mm wide timber stud panels with one row mid-height noggins with the walls to the cloakroom and bathroom pre-fitted with 18mm ply to one side
- 89mm wide timber sofit panels (with 450mm DPC), head-binders and rails
- 15mm wall board with taped & jointed finish

INTERMEDIATE FLOOR (LOOSE JOISTS)
- 22mm T+G plywood flooring
- Nominal 250mm deep metal-web timber joists, including trimmers and beams to form upper floor
- FCM750 air-tight membrane to external and party wall perimeter of upper floor
- Joist hangers and all other associated floor joists to form the structural floor
- 15mm wall board with taped & jointed finish

ROOF
- Roof trusses, beams and stability bracing
- 89mm wide timber spandrel panels with 9mm OSB and standard breather paper
- 63mm timber gable ladders
- Truss shoes and all other associated floor joists
- Nominal 38x140mm flat roof joists, timber beam to support trusses and 38x50mm fringes

TIMBER FRAME

EXTERNAL WALLS TO HOUSES
- 102.5mm facing brickwork
- Masonry wall ties to suit 130mm cavity
- 50mm clear cavity
- 80mm board insulation installed in the cavity
- 100mm medium density blockwork
- 6mm plaster gauge coat to seal hidden air paths
- 12.5mm wall board on 10mm adhesive dabs
- Overall thickness of external wall = 361mm
- To achieve 0.19 W/m²K U-value

MASONRY
- Overall thickness of external wall = 340mm

EXTERNAL WALLS TO ROOF PARAPET
- 102.5mm facing brickwork
- Masonry wall ties to suit 130mm cavity
- 50mm clear cavity
- 80mm board insulation installed in the cavity
- 100mm medium density blockwork
- 50mm rigid insulation board to upstand
- Waterproofing membrane lapped up and under coping

INTERNAL WALLS: NON-LOAD BEARING
- 10mm adhesive dabs
- 100mm medium density blockwork
- 15mm wall board with taped & jointed finish

INTERMEDIATE FLOOR (LOOSE JOISTS)
- 22mm T+G plywood flooring
- Nominal 250mm deep metal-web timber joists, including trimmers and beams to form upper floor
- Joist hangers and all other associated floor joists to form the structural floor
- 15mm wall board with taped & jointed finish

ROOF
- Roof trusses, beams and stability bracing
- 89mm wide timber spandrel panels with 9mm OSB and standard breather paper
- 63mm timber gable ladders
- Truss shoes and all other associated floor joists
- Nominal 38x140mm flat roof joists, timber beam to support trusses and 38x50mm fringes

MASONRY
- Overall thickness of external wall = 325mm

PARTY WALLS
- 12.5mm wall board with taped & jointed finish (with joints staggered vertically and horizontally)
- 9mm sound plank
- 89mm wide timber stud panels with 9mm OSB to cavity face
- 89mm wide timber sofit panels (with 150mm DPC), head-binders and rails
- TF party wall cavity insulation (2 layers 100mm acoustic roll and 1 layer 65mm mineral wool), with polyethylene sleeved cavity barriers to seal edges of party wall cavity
- 89mm wide timber sofit panels (with 150mm DPC), head-binders and rails
- 89mm wide timber stud panels with 9mm OSB to cavity face
- 19mm sound plank
- 12.5mm wall board with taped & jointed finish (with joints staggered vertically and horizontally)

INTERNAL WALLS: NON-LOAD BEARING
- 12.5mm wall board with taped & jointed finish
- 89mm wide timber stud panels with one row mid-height noggins with the walls to the cloakroom and bathroom pre-fitted with 18mm ply to one side
- 89mm wide timber sofit panels head-binders and rails
- 12.5mm wall board with taped & jointed finish

INTERMEDIATE FLOOR (LOOSE JOISTS)
- 22mm T+G plywood flooring
- Nominal 250mm deep metal-web timber joists, including trimmers and beams to form upper floor
- Joist hangers and all other associated floor joists to form the structural floor
- 15mm wall board with taped & jointed finish

ROOF
- Roof trusses, beams and stability bracing
- Masonry external walls continued up to underside of roof covering, with cavity insulation terminated in line with top of the ceiling insulation
- 63mm timber gable ladders
- Truss shoes and all other associated floor joists
- Masonry party walls continued up to underside of roof covering, with cavity insulation terminated in line with top of the ceiling insulation
The results and comparison within this section are based on prices received by RLB during the 1Q 2018. The resulting tables and charts have been prepared by the author, Ian Dacre of Rider Levett Bucknall, and are the ‘mean’ prices of those received.

The prices are based on three timber frame quotations and four main contractor quotations for the housing model and were received during January / February 2018.

It can be seen that there are some unusual cost differences for one or two elements but we have chosen to leave the base data as submitted by the four contractors to arrive at the mean costs per element.

As with any tender exercise there are vagaries of pricing and if you look at one individual tender this could be an issue. We have received four and between the prices we have been able to normalise the vagaries whilst also leaving the base pricing level data un-touched.

The results were interesting. One contractor of the four priced the construction elements resulting in the masonry option being more economical than timber frame, whereas the other three had the timber frame more economical.

Also, within the pricing it was evident that the external cavity walls by all four contractors resulted in masonry being more economical than a timber frame solution for this particular element. However, as can be seen from the tables below, the overall situation, when factoring in the other building elements and site preliminaries, results in the timber frame solution being more economical to construct.

The preliminaries pricing by the contractors was based on their own interpretation of the construction programme for each build method. The tables below have been based on the mean programme (in weeks) and the costs associated. All four contractors suggested constructing in timber is between 6 and 13 weeks quicker than in masonry. The mean of the four is 8 weeks quicker.

The tables below give the overall average elemental analysis plus cost and programme summaries.

SUMMARY PRICING BY ELEMENT

<table>
<thead>
<tr>
<th>AVERAGE CONTRACTOR PRICING ELEMENTAL BREAKDOWN</th>
<th>TIMBER FRAME</th>
<th>END TERRACE</th>
<th>MASONRY</th>
<th>END TERRACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substructures</td>
<td>£13,694.52</td>
<td>£16,386.15</td>
<td>£14,544.76</td>
<td>£17,119.28</td>
</tr>
<tr>
<td>Upper doors</td>
<td>£2,950.04</td>
<td>£2,800.04</td>
<td>£2,786.21</td>
<td>£2,789.48</td>
</tr>
<tr>
<td>Stairs</td>
<td>£1,822.09</td>
<td>£1,822.09</td>
<td>£1,822.09</td>
<td>£1,822.09</td>
</tr>
<tr>
<td>Roof</td>
<td>£10,850.29</td>
<td>£11,244.88</td>
<td>£10,756.46</td>
<td>£11,526.97</td>
</tr>
<tr>
<td>External walls</td>
<td>£8,916.31</td>
<td>£7,985.09</td>
<td>£7,426.50</td>
<td>£7,775.37</td>
</tr>
<tr>
<td>Windows and external doors</td>
<td>£6,495.67</td>
<td>£8,084.09</td>
<td>£6,800.00</td>
<td>£8,411.46</td>
</tr>
<tr>
<td>Internal walls</td>
<td>£10,723.04</td>
<td>£8,991.96</td>
<td>£10,539.91</td>
<td>£9,578.60</td>
</tr>
<tr>
<td>Internal doors</td>
<td>£4,341.71</td>
<td>£3,952.95</td>
<td>£4,403.68</td>
<td>£4,032.82</td>
</tr>
<tr>
<td>Wall finishes</td>
<td>£4,314.09</td>
<td>£4,285.71</td>
<td>£5,068.67</td>
<td>£4,374.98</td>
</tr>
<tr>
<td>Floor finishes</td>
<td>£1,829.76</td>
<td>£1,827.04</td>
<td>£1,853.73</td>
<td>£1,820.74</td>
</tr>
<tr>
<td>Ceiling finishes</td>
<td>£1,831.95</td>
<td>£1,836.41</td>
<td>£1,831.95</td>
<td>£1,836.41</td>
</tr>
<tr>
<td>Fixtures and fittings</td>
<td>£8,700.47</td>
<td>£8,700.47</td>
<td>£8,700.47</td>
<td>£8,700.47</td>
</tr>
<tr>
<td>Sanitary appliances</td>
<td>£3,205.94</td>
<td>£3,205.94</td>
<td>£3,238.64</td>
<td>£3,238.64</td>
</tr>
<tr>
<td>Mechanical services</td>
<td>£7,883.38</td>
<td>£7,883.38</td>
<td>£7,923.50</td>
<td>£7,923.50</td>
</tr>
<tr>
<td>Electrical services</td>
<td>£2,972.40</td>
<td>£2,972.40</td>
<td>£2,989.45</td>
<td>£2,989.45</td>
</tr>
<tr>
<td>Builders works</td>
<td>£471.75</td>
<td>£471.75</td>
<td>£673.26</td>
<td>£673.26</td>
</tr>
</tbody>
</table>

SUB TOTAL

<table>
<thead>
<tr>
<th></th>
<th>£90,563.41</th>
<th>£101,810.32</th>
<th>£90,720.28</th>
<th>£103,157.82</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of units</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Total construction works</td>
<td>£1,445,814.53</td>
<td>£1,628,965.20</td>
<td>£1,451,524.52</td>
<td>£1,656,285.07</td>
</tr>
<tr>
<td>Preliminaries</td>
<td>£269,303.36</td>
<td>£269,303.36</td>
<td>£310,780.59</td>
<td>£329,749.52</td>
</tr>
<tr>
<td>TOTALS</td>
<td>£3,344,083.09</td>
<td>£3,344,083.09</td>
<td>£3,437,159.12</td>
<td>£3,437,159.12</td>
</tr>
</tbody>
</table>

SUMMARY BY BUILD TYPE

<table>
<thead>
<tr>
<th>TIMBER</th>
<th>NR UNITS</th>
<th>£ / UNIT</th>
<th>TOTAL</th>
<th>£ / m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid terrace unit</td>
<td>16</td>
<td>£90,363.41</td>
<td>£1,445,814.53</td>
<td>£1,628,965.20</td>
</tr>
<tr>
<td>End terrace unit</td>
<td>16</td>
<td>£101,810.32</td>
<td>£1,628,965.20</td>
<td></td>
</tr>
<tr>
<td>SUB TOTAL</td>
<td></td>
<td></td>
<td>£3,074,779.73</td>
<td>£1,055.90</td>
</tr>
<tr>
<td>Preliminaries (41 weeks)</td>
<td></td>
<td>£269,303.36</td>
<td>£92,48</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>£3,344,083.09</td>
<td>£1,148.38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MASONRY</th>
<th>NR UNITS</th>
<th>£ / UNIT</th>
<th>TOTAL</th>
<th>£ / m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid terrace unit</td>
<td>16</td>
<td>£80,200.28</td>
<td>£1,451,524.52</td>
<td>£1,656,285.07</td>
</tr>
<tr>
<td>End terrace unit</td>
<td>16</td>
<td>£103,517.82</td>
<td>£1,656,285.07</td>
<td></td>
</tr>
<tr>
<td>SUB TOTAL</td>
<td></td>
<td></td>
<td>£3,107,809.59</td>
<td>£1,067.24</td>
</tr>
<tr>
<td>Preliminaries (49 weeks)</td>
<td></td>
<td>£229,343.82</td>
<td>£113.30</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>£3,337,153.42</td>
<td>£1,180.34</td>
</tr>
</tbody>
</table>
The procurement process for a timber frame solution is different to that of a more traditional masonry build, and the following items should be considered in the pre-planning stage of a project to ensure the overall success.

- Lead in time for the timber frame design and manufacture
- Engage timber frame suppliers early to maximise value engineering opportunities
- Manage the design process to achieve final design to allow early off-site manufacture
- Ensure level and dimensional tolerance for foundations are understood and achieved
- Minimise change once manufactured
- Engage with follow on trades and materials suppliers earlier to ensure understanding of programme and timescales of timber frame
- Consider fire risk mitigation at cost plan stage, design stage, and construction stage on site
- Consider the quicker return on investment of capital employed

Some, if not all of the above, issues have been taken in account with the four contractors’ pricing levels we have seen. All four contractors suggested the procurement and overall delivery using a timber frame solution will be quicker (on average by 8 weeks for our model).

To provide a commentary, we have identified areas which have been raised by the industry as factors to consider:

- Duration of scaffold hire / temporary works
- Number of deliveries to site to be ordered, coordinated, checked, signed-off and paid
- Forklift movement of materials on site
- Number of suppliers to manage and coordinate on site
- Requirement for on site storage
- Requirement of setting-out on site for bricklayers
- Requirement for window and door formers
- Requirement for lintels
- The impact of inclement weather on the delivery programme
- Speed of installation of mechanical and electrical services
- Foundation design to suit imposed load from superstructure build method
- Provision of warranties and product guarantees
- Site waste and disposal costs
- Commencement within the build programme of internal works
- Requirement for wet trades and drying out
- Requirement for design input by the client’s design and site teams
- Use of Building Information Modelling (BIM)
- Preliminary works and impact on the overall build programme and costs
- Risk of market conditions including:
 - capacity
 - availability of materials
 - availability of skills
- Speed of build and the impact on:
 - cash-flow
 - return on investment
 - interest costs
9 OTHER CONSIDERATIONS

What to consider:

- Early design team integration (and use of BIM) required
- Preparation and completeness of designs (design freeze) to benefit from early off-site manufacture
- Understanding how the choice of build method impacts the remaining supply chain
- A full understanding of the programming opportunities for the follow-on trades
- Fire risk mitigation considered at cost plan, design and stage and construction (on site)
- The need for accurate and level foundation / slab setting out
- Other materials to provide weather proof external envelope and internal finishes.

10 SUMMARY

The debate may continue, we know, but RLB has undertaken an independent pricing exercise to establish which solution is more economical: masonry or timber frame, as a structural building solution.

The results from the four contractors show to us, that overall, timber, in this scenario, is the most economical solution.

We have seen, however, that individual pricing vagaries can slightly affect results and the average prices and programme times from the four contractors have been used to arrive at the summaries in this paper.

One contractor stated that masonry was the most efficient solution but taking in account the programme and preliminaries aspects, timber became more efficient for them.

All four contractors suggested in their pricing that the timber frame external wall element, in isolation, was more expensive than masonry. Again, however, factoring in preliminaries associated with the programme, timber was more efficient overall.

Overall the contractors suggest there are some elements that are more economical to build in a timber frame solution.

The percentage savings are:

- Construction elemental costs 1.1%
- Overall costs (including preliminaries) 2.8%

The summary below highlights the key findings of this study.

We are mindful this study is taken at a point in time and we are aware that the market conditions, commercial matters of companies and the overall economic climate can affect the pricing levels. The prices in this study are taken at the 1Q 2018 with all prices received during this period.

We trust this report has given a commentary and understanding of the costs and design implications for pricing a project utilising timber frame.

<table>
<thead>
<tr>
<th>ELEMENTS</th>
<th>TIMBER FRAME</th>
<th>MASONRY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MID TERRACE</td>
<td>END TERRACE</td>
</tr>
<tr>
<td>Substructure</td>
<td>£13,694.52</td>
<td>£16,366.15</td>
</tr>
<tr>
<td>Superstructure</td>
<td>£65,453.16</td>
<td>£54,241.09</td>
</tr>
<tr>
<td>Finishes</td>
<td>£7,975.80</td>
<td>£7,849.15</td>
</tr>
<tr>
<td>Fixtures and fittings</td>
<td>£8,700.47</td>
<td>£8,700.47</td>
</tr>
<tr>
<td>Services</td>
<td>£14,533.46</td>
<td>£14,533.46</td>
</tr>
<tr>
<td>Sub totals</td>
<td>£90,363.41</td>
<td>£101,810.32</td>
</tr>
<tr>
<td>Number of units - 160x each</td>
<td>£1,445,814.55</td>
<td>£1,678,965.20</td>
</tr>
<tr>
<td>Total construction works</td>
<td>£3,047,773.75</td>
<td>£3,047,773.75</td>
</tr>
<tr>
<td>Preliminaries</td>
<td>£269,303.36</td>
<td>£269,303.36</td>
</tr>
<tr>
<td>Totals</td>
<td>£3,344,087.09</td>
<td>£3,344,087.09</td>
</tr>
<tr>
<td>Cost per m²</td>
<td>£1,168.38</td>
<td>£1,168.38</td>
</tr>
<tr>
<td>Cost per unit</td>
<td>£104,502.60</td>
<td>£104,502.60</td>
</tr>
<tr>
<td>Programme</td>
<td>41 weeks</td>
<td>41 weeks</td>
</tr>
</tbody>
</table>
In completing this study many people and organisations have been involved, as noted on page 23.

In particular we need to thank Gilbert & Goode (Simon Caklais), Robert Woodhead Ltd (Craig Pygall), Speller Metcalfe (James Speller) and WRW Construction Ltd (Andrew Pettigrew) and their respective teams, who provided the detailed pricing information and programming information in order to make this comparison possible.

Oakworth Homes, Pinewood Structures and Stewart Milne Timber Systems kindly provided their pricing information for the timber frame elements. Thanks to HTA Architects for providing the design models of the houses used within the study. Finally, thanks must also go to Swedish Wood for their support with the study; the first of its kind for the industry.

Acknowledgements